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PREFACE

This Technical Information Memorandum was written to inform Air Force Flight
Test Center (AFFTC) Human Factors Engineers and other interested parties of the
history, hardware, and analysis methodology involved with the use of EEG technologies.
The flight test center has been involved with the measurement of EEG since the 1980's
when Dr. M.B. Sterman’s University of California at Los Angeles (UCLA) team first
began to perfonn in-flight EEG recording on AFFTC flights at Edwards Air Force Base.
That beginning led to the establishment of the In-flight Physiology Test Program (IFP),
of which the author is project manager. The IFP seeks to explore the use of
physiological measurements of aircrew as a tool to assess task loading and mental and
physical effort. The measurement and quantification of workload is the primary goal of
this program; and with that goal in mind the integrated collection of subjective,
gcxfnnnancc and.physiological data are being accomplished. During the last 3 years,
}. interest in, EEG technology has increased dramatically and several EEG programs have
dev qioped \mh?m dxffereng organizations of the AFFTC.
; i The 412 Operations Group/DOEH (Human Factors) sponsored the effort required
y-:to -prepare thi§ Technical:Information Memorandum. The author wishes to express
g sincere appreciation to Mrs. Deborah Mummah, 412 OG/DOEH. Thanks are extended
* to Drs. Barry Sterman and Chris Mann, from UCLA and Lawrence Ames of the the 412
Operatlons Group DOEH: for their valuable guidance and review of this document.
Information -and experimental data for this study were provided by Mr. Brandal
" “Suyenobu, Mr. ‘David Kalser and Ms. Bettina Veigel of UCLA. Data from the
. AFFTC/Test Pilot SchoolfNT 33 EEG study were provided by Major Pete Demitry of
* the AFTI F-J6 Program In addition, many thanks are extended to Dr. Glen Wilson of
’ the USAF iArmstfong ‘l,aboratory who provided information and prepublication
. documents whieh- contributed significantly to this research effort.




EXECUTIVE SUMMARY

This report examines electroencephalography (EEG) as a process to assess aircrew
task performance and workload. A historical review is made of the measurement and
analysis of EEG data, as well as a review of current Air Force Flight Test Center
(AFFTC) EEG flight studies. Information for this report is drawn from the AFFTC In-
flight Physiology Project (IFP), the AFFTC NT-33 TPS/EEG project, Dr. M.B.
Sterman’s UCLA/AFFTC EEG team’s work and an EEG workload literature review.
The report also covers EEG measurement hardware and signal analysis challenges. This
report evaluates several EEG analysis methodologies used in the general EEG literature
and recommends analysis methods for future studies at the flight test center. Quantitative
and qualitative assessments of EEG data are discussed and statistical methods of EEG
interpretation are examined in detail. A large bibliographic reference is included for
further EEG, workload, and workload assessment information purposes.
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INTRODUCTION

BACKGROUND

This technical information manual (TIM) presents the results of an Air Force
Flight Test Center (AFFTC) effort to examine the use of electroencephalography (EEG)
technologies for the assessment of aircrew workload during the flight testing of aircraft.
Information for this publication was collected through literature searches and lessons
learned from EEG test programs at the AFFTC.

Workload as defined in this publication is a complex concept which involves
primarily mental effort, but also the associated factors of physical actions and
environmental variables. This study will focus on applications to the flight environment.
In that environment there is no simple division of mental versus physical tasks, and
consequently, the effort of measuring workload will take a global approach.

Assessment of workload has traditionally been performed with the use of two
primary tools, subjective inquiry and performance comparisons. Subjective inquiry has
been the dominant tool in AFFTC flight test and has been primarily of two varieties,
postflight questionnaires and in-flight ratings. There is considerable overlap within these
two divisions and, in fact, the same tools have been used both in the air and on the
ground.  Questionnaires have involved interview techniques such as narrative
descriptions, the use of rating scales, and subjective opinion reports. In-flight subjective
measures have largely been in the form of verbal rating scale assessments using a variety
of scales. Rating scales such as Subjective Workload Assessment Technique (SWAT),
Subjective Workload Dominance (SWORD), and NASA Task Load Index (TLX) have
led the field in the subjective assessment of workload.

Performance assessment has also been used to determine workload, such as in
flight test where comparative analyses of pilot flight performance parameters are
compared. Under controlled conditions, often using the pilot as his own control,
performance has been compared using criterion such as flight path deviation, altitude
control, approach and departure deviatio~s, and other objective performance data.
Changes in performance are then correlated with the demands of individual missions to
determine whether the workload level affected the performance of the aircraft-pilot
system.

The previous subjective assessment tools have some disadvantages. Subjective
methods often have great variablity within and between subjects and are susceptible to
complex response biasing, while performance measures are very difficult to reproduce
and offer challenges in the control of extraneous variables. In-flight subjective measures
also suffer from being fairly intrusive to the primary task of flying the aircraft. The use
of pilot performance methods may also be subject to high variability due to




environmental conditions beyond the control of the experimenter.
OBJECTIVES

The primary purpose of this TIM was to investigate the feasability of EEG as an
inflight Human Factors workload assessment tool and to assess its usefulness in projects
undertaken at the AFFTC. The following discussion section covers historical EEG
background information and current AFFTC research. The secondary focus of this
report will be on the analysis methodology used historically and currently on EEG data.

DISCUSSION
Workload and EEG.

Workload as defined in this report represents both physical and mental effort.
Mental workload is complex and cannot be completely separated from physical tasks.
Nearly all aspects of mental workload in aircraft flight have their corresponding physical
control actions, therefore, any tasks performed in a flight scenario will have a physical
component which is associated with a mental process. The use of the term workload
implies both physical and mental aspects and for the purposes of this report will be used
synonymously. The use of workload measures inflight implies mixtures of complex
physical and mental tasking. One initial assumption made is if a task or task segment
is considered by the subject to be more difficult, then it is assumed that the subjects level
of workload is increased.

Since any conception of mental or physical workload is based on the ability of the
brain to coordinate the body, a logical assumption would be that workload could be
tapped by some direct connection with the brain. This has previously been attempted by
the use of subjective methods such as interview, questionnaire, and rating systems.
These systems provide varying perspectives on how much "workload" the individual is
experiencing. The advantages to these systems are associated with their ease of use,
their ability to quantify thought, and the fact that they can provide specific psychological
and motivational insight to actions. Their primary disadvantage is that this type of
communication is subject to the individual subject’s conscious filtering of the data for a
variety of psychological reasons. All of the primary emotional constructs of the human
being are incorporated into their response to subjective questions. For example, a
question response will be filtered by psychological and physical factors, so that the
response to an identical question after a 1 hour flight and after a 12 hour flight will
probably differ simply on the basis of fatigue. This filtering is a conscious action which
can usually be controlled, but not entirely suppressed. One driving factor in the use of
physiological measures, EEG in particular, is the perception that such measures are not
subject to direct conscious control, and therefore are less susceptible to biasing effects.
It is with this thought that physiological measures tap the source of cognition, without




the filter of consciousness, and this concept appeals to many physiological researchers.

Many physiological measures have been proposed to assess human workload
abilities. Electrocardiograms, Eye Blinks, Galvanic Skin Response, Respiration, Pupil
Response, and Speech Signals have all been tested to some degree. The EEG is
intuitively appealing, since it tracks the source of cognition and has a very quick response
time potential. The correl-tion of EEG signals to behavioral actions is of the most
complex nature and not subject to easy interpretation. The following sections will detail
the attempts to use EEG information to quantify mental effort and consequently,
workload.

EEG History

The measurement of EEG is not as recent a science as might be supposed. As
early as the 1890’s, Caton was measuring the EEG signal with very primative electrodes
and recording equipment. Berger examined changes in the 8 to 12 Hertz (Hz) band of
the EEG signal in the 1930’s. As early as 1949, Morruzzi and Magoun postulated that
cortical arousal (activation) would increase with increasing "workload" and that
manifestation would be present as a lowered voltage, higher frequency, EEG pattern.
This pattern is referred to as an alpha supression, where the normal rhythmic alpha
pattern in the 8 to 12 Hz range is suppressed or modified in frequency and amplitude.

More recently, Lindsley (1952), Hebb, (1955) and Duffy (1962) postulated that
EEG activation (and, consequently alpha suppression) may follow a continuum much like
that found in behavioral arousal. These theorys are based on the widely reported cyclic
properties of the alpha band waveform.

With the increase in sophistication of measurement technologies, the measurement
of brain "electrical output" has changed dramatically over the last 30 years, for example;
the technology of the 1940’s represented limited numbers of measurement sites,
mechanical pen type recording, and no on-line analysis abilities. In contrast, current
technologies allow multiple site monitoring (see Figure 1) with on-line Fast Fourier
Transform (FFT) capabilities, and digitized data storage in the gigabyte range.
Additionally, computers can create spectral and topographic EEG landscapes, which
indicate data output by site within any bandwidth. This dramatic evolution in technique
may have outstripped the analysis capabilities previously used for earlier investigations
(see Figure 2) and it is with that consideration that this report will emphasize the
complexity of the problem and some possible means of creating a "physiological
workload" metric.
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Side view and top view of the head showing electrode placement

based on cranial anthropometry. The nasion is also known as the

sellion, while the letters stand for corresponding areas of the

brain, F = frontal, C = central, T = temporal, P = parietal,

O = occiptal. -
Figure 1 Electrode Site Locations
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EEG Signal Research
Evoked Potentials

The application of EEG technology to workload, principally aircrew workload,
occurred in the late 1960’s to 1970’s. Prior to that time the use of EEG had been
primarily a medical tool with limited application to workload testing. Early military
research in the 1960’s and 1970’s focused on training and selection criteria as well as
performance decrement (due to a reduction in vigilance). The EEG data obtained at that
time were based on the brains reaction to brief visual stimuli. These stimuli caused what
was referred to as an evoked potential, that is, an event related electrical output.
Researchers produced those evoked potentials (EPs) or event related potentials (ERPs)
by flashing a bright light into the subject’s eyes and the resultant responses, in terms of
voltage changes, were recorded with scalp-mounted electrodes. Electrodes registered the
brains electrical changes at scalp locations (also known as sites). The actual cause,
formation and propagation of these electrical signals, is beyond the scope of this report,
however, from an engineering perspective they can be recorded and analysed as
representative traces of mental activity for any given type of task.

Evoked potentials produced by various stimuli consist of two components, which
are time related, they are: exogenous and endogenous. Exogenous components are
sensitive to stimulus duration, intensity, and frequency, and occur with short <100
milisecond (ms) latencies. They are relatively insensitive to task demand levels and have
wide variance with different stimulus modalities, however, they have little variance (<25
ms) within individual subjects. Endogenous components occur after a 100 ms cutoff and
vary with task relevance, expectancy, and difficulty. Figure 3 shows how the continuous
EEG signal is modified by the stimulus (bright light flash) and results in the various EP
components with the passage of time. The brain reacts to the stimulus flash with a large
amplitude transient response that contains positive and negative components which are
shown in Figure 4. These components are named P or N (positive or negative) followed
by their latency in ms (100 = 100 ms), therefore, P100 is a positive deflection at 100
ms post stimulus. The progression of the EP waveform with time also reflects the

.direction from sensory to processing and finally to motor activity in response to the

stimulus.

There are several types of stimuli which have been used for EP research. These
are succinctly described by Shearer, et al. (1984), and consist of visual, auditory, and
somatosensory stimuli. Visual Evoked Potentials (VEPs) are elicited by strobes, pattern
onset and offset, pattern reversal, or pattern shifts. Auditory ERPs can be produced by
clicks or tones, and may also be called Brainstem Auditory Evoked Potentials (BAEPs).
Somatosensory Evoked Potentials (SEPs) are caused by electrical stimulation of median
and tibial nerves.
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A significant feature of EP analysis is that the EP signal produced by the brain
is embedded in the continuous, but lower power, EEG signal. When EP studies are
performed, the EP signal may be presented 20 to 100 times and then time averaged from
the stimulus onset. Effectively this cancels out the ongoing EEG signal and allows the
EP to be studied without the "noise" of the background EEG components. There is some
controversy as to whether this cancellation of the background EEG signal is not creating
an artificial brain signal based on EP output rather than "normal” EEG output. Wilson
(1982) found problems in A-10 aircraft simulator testing where moderate to high
workload conditions resulted in failures to attend to the EP tonal signal. His observations
may have led to Biferno using a "relevant, naturally occurring eliciting stimuli” as an
auditory EP producer in his 1985 study. Biferno’s EP stimuli was the subject’s radio call
sign, which Wilson applauded as a reduction in the "artificial" nature of most EP stimuli
which had previously been used. About this time the terminology for EPs switched to
Event Related Potentials which reflected the change from simple light or tonal impulses
to task related stimuli of various modalities.

Research issues within EP testing moved to specific components of brainwaves
in the late 1970’s through 1980°s. Research by Isreal, Chesney, Wickens and Donchin,
in 1980, used a tonal signal, instead of the more common visual stimulus, to assess the
voltage output while performing a primary task. While performing the primary task (an
air traffic control tracking situation) the tonal signal was presented and its consequent
effect on the EEG signal was measured. This signal change (output voltage difference)
was most noticeable about 300 ms after the tonal stimulus presentation. The designation
of this 300-ms componeént was P300, meaning a positive voltage output 300 ms after the
stimulus presentation. In addition, there were other components such as N100 and N200
that refer to negative amplitudes after simulus onset at 100 and 200 ms.

Natani and Gomer used a tonal EP, in 1981, to attempt to show significant P300
reductions and longer latencies with high workload conditions, however, this result was
not replicated in additional trials. Generally, these recognition trials involved two
secondary tones which had a probability of occurance of 80 percent or 20 percent. In all
cases, the tone with the lower probability was the test point and had to be recognized and
responded to in short term memory or with a button push.

Additional researchers associated with EPs such as Kramer, Wickens, and
Donchin reported, in 1983, the association of a particular time-related element of
brainwaves with increasing workload levels. This time component was referred to as the
P300 potential and coincided with the voltage output 300 ms after a discrete tonal
stimulus event.

In 1983, Kramer, Wickens, and Donchin characterized P300 as a positive polarity
voltage oscillation in response to a "task relevant, low probability event...whenever a
person is required to update an intemal model of the environment or task structure."
This statement is based on the limited resource, single pool, mental model (Wickens)




which postulates that the human has a limited source of mental potential and when tasked
with multiple duties it will have to "work harder” to accomplish those tasks. In terms of
the Wickens model, a change in voltage output will correlate to the addition of a second
task which the experimenter controls. For example, during a primary task like tracking
a moving point of light, a secondary task (a tonal signal) is introduced. This tone is
either of a high or low frequency and, based on its frequency, the subject must recognize
and acknowledge the proper tone. Concurrently, the subject is keeping a mental tally of
the number of high or low tones and, consequently, when the appropriate tone is heard
the subject must update their mental model and acknowledge the reception of the high
or low tone. This mental model involves recognition of the proper signal and then
acknowledgement of that signal by adding that tone to the mental tally of the times that
they have heard that tone during the test period. The test scenario created by Kramer
et al. involved this perception of the tone while the subject was performing a primary
tracking task. The experimental variation was the difficulty of the tracking task.

Results of the Kramer, Wickens, and Donchin experiment showed that with
increasing task difficulty there was a reduction in scalp voltage output (at the measuring
site) recorded within a specific time after the tonal onset (Figure 5).

A significant problem area with the use of ERPs is the timing of the ERP signal
tone in synchronization with a discrete aspect of the primary task. To overcome this
issue, Wilson & McCloskey used a 250 ms delay from the presentation of the primary
task to the presentation of the secondary tonal signal. In this way the subject was
processing the primary task at the time the secondary tonal stimulus arrived. This
resulted in amplitude changes which varied with task difficulty (Figure 5). Reductions
in the amplitude at the P300 component are shown with increased levels of mathematical
task difficulty in Figure 6.

Wilson (1991) used different levels of task complexity with the Criterion Task Set
(CTS) which was created by Shingledecker in 1984. The CTS is composed of cognitive
tasks of varying degrees of difficulty and these were then introduced into the primary
task. Figure 7 shows the ERP response from a midline parietal brain site (PZ) and its
P300 component shows a reduction in amplitude with the two difficulty levels of a
linguistic primary task.

The types of correlations associated with changes in P300 output are listed in
Table 1. This table shows that the types of associations to various psychological
phenomenon are extensive. That diversity of responses to an artificial stimulus over
repeated trials yielding such a diverse psychological spectrum presents an interesting
challenge for future research.
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Figure 5 EP Amplitude Reduction With Increased Workload
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Figure 6 EPs with Different Levels of Math Complexity
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Table 1.

ERP AND P300 ASSOCIATIONS TO PSYCHOLOGICAL PHENOMENA

Researchers Year Association
with:

Sutton, Braren, | 1965 Uncertainty

Zubin, and

John

Sutton, Tueting, | 1967 Information

Zubin, and Delivery

John

Ritter, 1968 Orienting

Vaughin,

and Costa

Squires, 1976 Expectancy

Wickens, ,

Squires, and

Donchin

Kutas, 1977 Stimulus

McCarthy, and Evaluation

Donchin

Ruchkin and 1978 Equivocation

Sutton

Ruchkin and 1978 Value or

Sutton Meaning

Donchin 1981 Context and
Context and Schema
Schema Updating

The use of ERPs provides a classic psychological stimulus-response test paradigm,
where a signal (tonal or visual) results in a response (amplitude fluctuation).
Shortcomings to the use of this paradigm are due to the criticality of timing the ERP
stimulus to the primary task, and also the possibility that ERP responses may be artificial

14




in nature and overly intrusive to primary task performance. It is with these reservations
that other forms of EEG analysis have been proposed.

Historical EEG Waveform Analyses

A vast array of EEG output has been measured from many cranial topographic
locations. Where ERP measurements generally rely on a smaller number of electrodes,
the use of spectrographic methods permits sampling the various EEG signals from many
sites simultaneously. Using this enhanced array of sampling electrodes, an additional
factor was usually included, which is segmentation of those signals into specific
frequency and time bands. This methodology also used sampling periods of different
lengths, called epochs. The selection of epoch lengths ranged from less than 1 second to
minutes, depending on the researchers needs.

Early research in the area of spectrographic analysis used animals (primarily cats)
as test subjects, and their EEG patterns were evaluated during sleep states. In 1967, a
paper by Chase, Nakamura, Clemente, and Sterman discussed the concept of EEG alpha
changes. An example of the development of the spectrographic technique is found in
Sterman’s 1981 study of the power spectral analysis of the EEG in humans, specifically
epileptics. Spectrographic analysis gave the same information as ERP analysis but
yielded a better understanding of site output without the use of intrusive "stimulus”
signals. It could therefore monitor the continuous EEG output without the intrusion of
external stimulus inputs on the primary task.

Analysis Methodology

There were numerous methods usec to analyze EEG and ERP data, they ranged
from visual inspection of waveforms to statistics and computer modeling. Data analysis
methods listed below have been used on both types of EEG data and are reviewed as
possible techniques for future EEG analysis.

Regression

A number of researchers have used regression analysis for waveform data and an
example is given in Shaw, 1984. Figure 8 shows a simple scatter diagram produced by
plotting successive amplitude values of two wave forms. Using this model the predictive
ability of one waveform can be compared to the second, as well as comparisons of
variance differences. Often this analysis could be used for tests of inter-hemispheric
differences (asymmetry) and would use the variance or mean amplitude ratio from
homotopic sites of the two hemispheres (see Beaumont, 1983). Using the regression
coefficient (ratio of the correlated parts of the signals), and the residuals, the waveforms
could be analysed in terms of their variance in regard to the accuracy of the regression
equation’s predictive ability.

15




Amplitude values of two site waveforms converted into a
scatter plot and fit with a least squares regression line.

Figure 8 Scatter Diagram and Regression Plotting
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In terms of analysis, the study done by Matousek and Peterson (1982) on alertness
functions used data from eight EEG sites in a regression model. The data in Figure 9
was from a patient with a hydrocephalus condition and was used in a multivariate model
to assess surgical treatment effects on drowsiness. In Figure 9, a vigilance epoch period
of 4 minutes was used to show decrements in vigilance as rated on a subjective scale of
two sleep stages. These stages were from alert (stage 0) to drowsy (stage 1). A baseline
level of alertness was begun at the horizontal line beginning at stage 0 and was caused
by a flash of bright light to the subjects eyes. The data shown in this figure shows
amplitudes plotted against sleep stages over a period of five minutes. Differences
between the upper chart and the lower chart were due to the experimental treatment
(surgery), and show greatly diminished power fluctuations. The specific power levels
were not reported in this study, and therefore the graph is primarily illustrative of the
technique of regression rather than serving to illustrate a specific hypothesis about
frequency or power versus vigilance. What Figure 9 shows is that regression modeling
has been used as an EEG analysis tool.

Another example of the use of regression modeling is from the AGARD
Conference proceedings of 1988 (Electric and Magnetic Activity of the Central Nervous
System: Research and Clinical Applications in Aerospace Medicine). In that publication,
Sterman, Schummer, Dushenko, and Smith used a regression-based model to examine
trends in performance in an enroute phase of a simulator flight task.

Figure 10 shows a comparison of modulation trends with task performance,
modulation being defined as a variation in frequency or power. This is shown as a
power spectral level versus time for poor and good task performance. Figure 10 shows
that the slope of the regression line is decreasing with time in the poor performance
category while it is increasing in the good performance catagory. This would imply that
average power was decreasing over time with poor performance and increasing over time
with good performance. Over the time of the test (10 minutes) there appears to be about
a 0.25 to 0.30 microvolt difference between good and poor performance. It is not clear
in this case whether the difference in microvolt amplitudes was statistically significant
(no statistical tests of slope differences or mean microvolt amplitude were performed on
this data). As an example of regression modeling, Figure 10 is illustrative of the
concept, but not indicative of the predictive modeling capabilities of regression.
Assuming that the slope or amplitude values of the data were statistically significant, then
the regression model could have had predictive power regarding mean microvolt
amplitude or increasing/decreasing trends.
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Figure 9 Regression Modeling of EEG Signals versus Vigilance
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to poor performance using discrete power spectral values (y axis) versus
time on the x axis. Data are plotted amplitude values in the 8 to 12 Hertz
bandwidth, and show increased periodicity in the poor performance task
versus decreased periodicity with good performance. Also, note slope
of the regression is different for both types of performance.

Figure 10 Regression Analysis of Power Spectra
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Topographic EEG Analysis

Methods listed previously have looked at power trends by site or over different
tasks without specifically looking at the location of those signals within the brain.
Topographic analysis can look at power output within brain sites as an indicator of
activity, and possibly workload. The analysis of this type of data is based on the
anatomical purpose of each of the parts of the brain located under the 10/20 electrode site
placement system. As a result of this anatomical knowledge an increase or decrease of
electrical activity in a certain part of the brain, at a particular recording site, may
indicate that a certain type of function is being performed. Examples of research
involving topographic EEG interpretation are listed below.

Galin and Omnstein compared right and left hemisphere EEG signal asymmetry
in their 1972 paper, which used power band records of right brain dominant vs left brain
dominant tasks. Since that time computer aided technology had developed to the point
where Sterman, and Suyenobu (1990) could produce brain maps showing activation areas
by particular bandwidth. This capability is illustrated in Figure 11 which shows the
mean power levels in an absolute (ABS) and relative (REL) scale over three different
bandwidths. The use of the absolute scale is for between subject analysis while the use
of the relative scale is for within subject analysis. The type of color mapping produced
by this technology shows that at any one time there is greater or lesser activation of a site
or combination of sites. Another advantage to this type of technology is the spreading
activation of sites could concievably show the way in which the brain responds to
different types of tasks or conditions. Figure 11 is illustrative of a qualitative analysis
tool rather than a quantitative tool.

7.0 to 9.0 Hz. 9.0 to 11.0 Hz 11.0 to 13 Hz

Three bandwidth representations of brain activity shade coded
using an absolute (top row)(between subject) value and a relative
(bottom row)(within subject) value. Lighter color indicating
greater activation.

Figure 11 Power Levels by Bandwidth
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Topographic EEG technology is also shown in the study by Yamamoto and
Matsuoka in 1990, where they studied VDT performance using frontal (f7, 3, fz, f4, f8)
recording sites in the Theta (3.6 to 7.8 Hertz) band. Their article showed the
significance of activation levels of the frontal area in terms of work speed and time on
task. This is shown graphically in Figure 12, which was based on young adults, middle-
aged subjects, and elderly subjects. In their study, the brain was segmented into nine
areas on a geometric basis and those areas were classified regarding their output in the
Theta Band (3.6 to 7.8 Hertz). Amplitude was classified into three catagories: mean +
2 SD (Standard Deviations), mean + SD, mean - SD, and mean -2 SD. This provided
3.5 microvolt steps with a maximum amplitude of 55 microvolts. Using a statistical
approach like this provides a quantitative measurement of site activation, one which can
be statistically tested for significance. As an example, Figure 12 shows the statistically
significant changes in amplitude over time for all the sites measured. Once this
information is correlated to the functions of those sites, the activation pattern may be
related to the tasks being performed at discrete points in time. This provides a reliable
method to track brain activation over time and should have far reaching consequences in
examining activation potentials in regard to tasks which require a fairly long period of
time to complete. This study was based on the quality and amount of VDT work
produced by the time in minutes allowed.

The essence of Figure 12 is that the measurement of brain activation by site is an
evolved technology. What must follow from this information is the ability to predict and
correlate brain activity, in terms of activation, to the level of difficulty of tasks and
workload conditions. -

2

Significantly
Activated Brain Areas

Amount of Work _ M

(Per Hour) 1 ! ]

30 60 %0

Work Duration Time (Minutes)

Locational (1opograpiic change) over time with extended periods of
work, shown by Standard deviation levels, representing amplitude from
monitoring sites.

Figure 12 Standard Deviations of EEG Activation Over Time
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Simple Signal Detection Methods

An early analytic method used by Yingling, in 1977, consisted of recording the
polarity of signals from pairs of channels. This approach provided a simple,
dichotomous selection routine which could quantitatively assess laterality, amplitude, and
site interaction effects. Increasing complexity of hardware and signal collection provided
more information than could be effectively manipulated using this method by hand. The
next decade provided computer and measurement technology advances which allowed
spectral analysis and topographic analysis to develop. Some of those methods will be
reviewed with respect to their usefullness at the Flight Test Center’s EEG work.

ANOVA and MANOVA

The use of Analysis of Variance (ANOVA) and Multivariate Analysis of Variance
(MANOVA) have been used on EEG data from the early days of EEG measurement.
The analysis of variance on power levels of ERPs have been used from the 1960’s on and
constitute the most prevalent form of quantitative assessment. The work of Donchin,
Kramer, Wickens, Braun, Givens, and Wilson contains numerous examples of the use
of these methods to assess EEG signals.

Spectral analysis with ANOVA was a prominent means for assessing EEG signals
and is discussed by Gliner, Mihevic, and Horvath (1982). Electrode output was digitized
at 128 samples per second according to the Nyquist sampling theorem of 1924.
Conventional bandwidths of O to 3 Hertz; 4 to 7 Hertz; 8 to 13 Hz; 14 to 19 Hz and 20
to 32 Hertz were used and, for each trial a 10-second sample was examined for mean
power and frequency. Mean frequency per bandwidth was determined by multiplying
the intensity by the frequency per Hz unit in the bandwidth. This result was summed and
then devided by the sum of the intensities. This created 10 second epochs that were
visually scanned for artifacts and then subjected to a two-factor, repeated measures
ANOVA. The dependent variables were energy or frequency in each bandwidth and
independent variables were hemisphere by trials.

One of the problems associated with EEG data analysis and the use of ANOVA
is the possiblity of probability (p) value inflation due to redundancy in the data. This
redundancy may be due to overlap of one site to the next and to correct for this possible
problem there have been procedures adapted to EEG analysis to compensate for this error
possibility. Stanny, Reeves, Blackburn, and Banta point this out in their 1987 paper on
naval aviator selection using ERP data. As an example, they obtained a p value of
.000025 for a single test and then applied a Bonferroni correction to yield a
conservatively corrected value of p =.0018. This value was arrived at by examining the
effect that 72 correlations between hemispheric differences may have had in inflating the
original probability estimate. Strictly speaking, the Bonferroni procedure is not a
statistical cure for dependence in the data, it only compensates for the effect of variables
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which may create inflated p-value conditions. In this respect, the Greenhouse-Gieser
correction or Huyhn-Feldt procedures are often used to conservatively correct the
experimentally derived p value. Inflation of the p values in tests of this type may also be
due to interdependence (nonorthogonal relationships) and may also result from
hemispheric redundancy in terms of electrode site locations. Gilner, Mihevec, and
Horvath also explored ANOVA interaction effects, since changes in hemisphere
activation levels would be important. To verify the results of those interaction tests they
used Post-Hoc comparisons with the Newman-Keuls procedure.

Correlation

This was perhaps the first method of analysis of EEG signals going back to the
first EEG experiments. Comparisons of amplitude to work conditions have been used
extensively since the early days of EEG measurement. Correlation analysis has been
used since 1949 to measure correlations between site output and tasks in many aspects
of brainwave research. Generally, a Pearson product moment is calculated on sucessive
amplitude values which results in correlations as a function of time displacement. A
correlation of this type is a measurc of the strength of the association between two
variables, where the strength of association is expressed as a linear relationship. The
Pearson product moment is not sensitive to relationships which are not linear. Since
these EEG data points are based on a traveling wave, the use of the Fast Fourier
Transform (FFT) allows the computation to be calculated quickly. A disadvantage to the
correlation function is that there may not be a correlation maximum at a meaningful
value of lag. Use of coherence analysis reduces error from correlation with different lag
periods. Coherence analysis uses the correlation between a pair of signals expressed as
a function of frequency, but uses coherence coefficients, which are transforms of the
correlation function.

Period Analysis

A method which has been used by Pigeau, Hoffmann, Purcell and Moffitt (1988)
is period analysis. This method is based on the change of sign of the part of the
waveform as it passes through zero which gives a measure of the waves "frequency."”
In addition, they calculate the power of the waveform by cumulative addition of the
absolute voltage between zero cross events. In order to discriminate what they call
“faster frequencies superimposed on the main waveform," they also applied a first
derivative measure on the negative inflections in the EEG voltage and the time in
between each of those events.

The location of the waveforms maxima and minima are equivalent to the zero
crossings for the first derivative, but this analysis method may not be sensitive to lower
frequency time segments. To counter this an algorithim is used which measures the time
difference between minima and maxima, and associated with this time difference is a
frequency measure. What this does is create a new "smoothed" curve. The drawback
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to this is that higher sampling rates are needed to compensate for the loss in resolution.
Historical EEG Analysis Summary

This discussion has reviewed several features of EEG measurement, Spectral
Analysis, Topographic Analysis, and Statistical Analysis. Analysis of EEG for a variety
of tasks have used these methods and it is expected that they may be used to assess
workload in a flight test context. Quantification of workload in particular inay be
addressed using one or more of these techniques, and all have had a significant impact
on EEG as a diagnostic tool in fields as diverse as detection of brain abnormalities to
VDT usage. If there is a trend in the literature, however, it is away from the use of
ERPs. It is proposed that the use of ERPs have less overall potential for flight test than
spectrographic or topographic techniques. One of the reasons for this is that ERPs are
more intrusive to the task at hand, as well as requiring multiple trials in order to be
effective. The ERP may also be more suited to a laboratory environment rather than a
dynamic flight test. In general, the use of ERP stimuli has been supplanted by allowing
the task features themselves to determine critical points for assessment. If secondary
tasks, or dual performance of tasks is required it can be woven directly into the task
being performed and thus not create the intrusion of an extraneous signal such as may
be caused by ERP stimuli.

Common EEG Measurement Hardware

Rather than proceed with a developmental, historical perspective, the following
section will deal with primarily state-of-the-art EEG hardware which has developed over
the past 10 years. Since this is a rapidly progressing field, the technology is constantly
changing and it is through comparisons of several researchers that a clear picture emerges
of what is being used in laboratories throughout the world. This section will also deal
with some of the data processing assumptions which have been employed to date.

EEG Signal Detection and Measurement.

Electroencephalographic measurements are in the form of microvolts detected
from the Thalamo-Cortical network. This structure produces gated discharges which are
measured on the scalp at specific sites described by the 10/20 system. In early research,
the metallic electrodes were usually gold or silver plated, and attached with collodion (a
liquid plastic like material). This attachment is unacceptable for flight test for two
reasons: (1) collodion is a viscous nitrocellulose suspension in a toxic, flammable,
solvent mixture, and (2) when dry, the collodion tends to bond very well with the skin
and may require flammable solvents for removal.

Currently, electrodes are cup type, lighter in weight, and are "attached" to the

skin by use of a gellatinous, highly conductive paste. There are also "dry" electrodes
which may be attached to areas of the body which are not heavily covered with hair.
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The Air Force Flight Test Center, in cooperation with M.B. Sterman and his
associates at the University of California, Los Angeles, have developed an electrode
placement system adapted to flight test. Electrodes are held in place by a standard elastic
skull cap equipped with portals for the electrodes. This skullcap has the portals situated
in accordance with the international 10/20 system of placement. In the 10/20 system,
the distance between the sellion (nasion, bridge of the nose) and the inon (bony
protruberence at the back of the head) is divided into equal incremnents longitudinally and
laterally. This provides an even spacing of electrode sites, see Figure 1. The strength
of the EEG signal is also magnified by the use of sophisticated preamplifiers mounted
inline at the electrode site.

Two examples of measuring and processing the EEG signal are included as
examples of two current methodologies. The first is the procedure used by Gratton,
Coles, Sirevaag, Eriksen, and Donchin (1988) for ERP measurement, the second is a
brief description of the method used by Sterman, Kaiser, and Mann (1992) used for
continuous EEG measurement. These descriptions include capturing the signal and
processing the signal prior to analysis. The experiment described by Gratton also
included the measurement of Electromyograms (EMG) and Electroculargrams (EOG).

Gratton’s measurement of the EEG signal for ERPs was taken from Fz, Cz, Pz,
C3, and C4 (see Figure 1 for locations), and was referenced to linked mastoids with
Burden type Ag/AgCL electrodes. Impedance was less than 5K Ohms, and the signal
was amplified by Grass model 7P122 amplifiers. That signal was filtered on-line with
a high frequency cutoff at 35 Hertz and used a time constant of 8 seconds for the high
pass filter. The voltages were digitized at 100 Hertz for 2,100 ms, and at 100 ms prior
to a waming cue to the subject, and ended 1 second after the test array was presented.
A correction was applied for vertical and horizontal ocular movement artifact using a
modification of the procedure described in Gratton, Coles, and Donchin (1983). Their
data were then smoothed using a low pass digital filter (high frequency cutoff at 3.1
Hertz, with two iterations). The signal baseline was averaged for the first ten points of
the epoch (approximatly 100 ms) and that average subtracted from the total signal to
yield the ERP waveform.

The next description is taken from Sterman, Kaiser, and Mann (1992)(In-Press).
Using the 10/20 system, 19 recording sites were referenced to linked ears. Impedance
was tested and found to be below SK Ohms. Prior to the test the EEG recording system
was calibrated using an MS-20 Miniscope oscilloscope (NonLinear Systems, Inc.) with
a custom designed signal generator. Using a method developed in previous studies
(Sterman, Schummer, Dushenko, and Smith, 1988) a calibration signal was used which
consisted of a 3-minute, 9.5-Hertz sine wave of 50 microvolts peak-to-peak. During
testing, a Neurosearch 24 EEG system digitized the analog EEG signal at 512 samples
per second, with a 12-bit A/D converter, and these digital sequences were then subjected
to a Blackman-Harris minimum 4-term window to eliminate discontinuities in the
waveform (Harris, 1978). The signal was highpass filtered at 2 Hertz (rolloff at 12 db
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per octave) and low pass filtered at 16 Hertz (rolloff at 48 db per octave). The data were
then Fast Fourier Transformed and stored as 4-second epochs with a frequency resolution
of 0.25 Hertz and listed as spectral density files in five bands. Frequency bands stored
were, S5to7, 7t09,9to 11, 11 to 13, and 13 to 15 Hertz. The bands were scanned for
artifact, subjected to additional filtering and common mode rejection, which eliminated
all epochs of data over two standard deviations above the highest artifact-free values for
a frequency band, (this resulted in loss of approximately 10 percent of the total epoch
data).

The data are then natural log transformed in accordance with the procedures used
by Gasser, Bacher, and Mochs, (1982). For more information on transforms, windowing
and smoothing functions see Appendix 1.

Signal Analysis
ERP Data Analysis

Figure 13 contains ERP wave representations resulting from three different levels
of workload on a variety of flight missions studied by Kramer, Donchin, and Wickens
(1987). Figure 13 plots the grand average ERP values (in microvolts) over 1,100
milliseconds. What this graph shows is a reduction in amplitude with increasing
workload at the P300 temporal location. A tonal stimulus occurs at time zero and the
ERP response develops into the characteristic pattern of large waveform deviations
followed by a return to the steady-state EEG signal. The statistical analysis of that
apparent difference is discussed in the following paragraphs. Two criteria overall were
used to assess this ERP, amplitude and latency.

This data analysis was performed using both standard three-way and a repeated
measures ANOVA. An example of this type of the three-way ANOVA included: for
main effects, two mission types by two tone types by three electrodes. Analysis of
Variance input used amplitude and latency of the P300 ERP. Results showed significant
(F( 2,12 )= 4.7, p. <.05) main effects for differences in workload due to mission type
as reflected by P300 amplitude. Post-hoc comparisons showed diminished P300
amplitude with increasing difficulty of the task. Latency data run through the ANOVA
also showed significant (F( 3, 18)= 11.3, p<.0l) differences which the authors
speculated reflected mission difficulty.

Kramer, Sirevaag, and Hughes in their 1987 paper on ERPs and performance
discuss the analysis of ERPs, particularily N160, N190, and P300. For the negative
components, both amplitude and latency measures were obtained by taking the average
data from each electrode. These data were subjected to an algorithm which selected the
most negative peak (relative to the mean prestimulus baseline in a latency window
determined by visual inspection, and was 100 to 300 ms poststimulus). The analysis of
the positive components for both amplitude and latency followed two different methods.
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Amplitude variability was determined by using a covariance algorithim which computed
the covariance using a cosinusoidal waveform within a moving 500-ms window. This
window began 300 ms poststimulus and ended 800 ms poststimulus. The positive latency
components were defined as the midpoint in the epoch which provided maximum
covariance. A second method tried by Kramer on the P300 amplitude and latency, used
a base-to-peak measure on single trials. His method analysed the largest positive peak
in a 300 to 800 ms poststimulus window.

Another approach to ERP analysis involves a fusion of ERP methodology with
Spectrographic methods and was used by Givens, Cutillo, Illes, Bressler, and Brickett.
This is referred to as event-related covariance (ERC). This is performed using as many
as 64 electrodes over 25 time intervals during a 4 to 6 second period from before
stimulus to response feedback acceptance. In a typical test case, 50 to 100 trials are
performed using 24 electrodes. Consistent event-related signals were averaged, filtered,
and subjected to analysis. The analysis consisted of the signal magnitude and lag time
of the sites sampled subjected to a covariance analysis. Each analysis compared all
pairwise channel combinations to determine the effect size of the waveform distortion and
its covariance with other sites. The significance of the ERCs was compared to the
standard deviation of the noise signal.
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Current EEG Analysis Techniques used at the AFFTC

Analogous to the use of ERPs to study a variety of mental processes, the use of
the overall EEG signal from multiple site electrodes provides greatly enhanced data
collection opportunities and challenges. Using from 12 to 64 electrodes, gathering data
at 128 samples per second over periods of time exceeding 12 hours, and viewing this
data through the window of FFTs in four or more bandwidths provides a vast amount of
data which must be converted to information. Much of the early "data analysis" for EEG
was simply visual scans of EEG printouts. Indeed much of the current EEG “"data
analysis" consists of visual scans of xy plots, regression lines, or topographic spectral
"landscapes.” The reaso:: for this is clear, the complexity of the data presentation does
not allow for simple statisical hypothesis formulation and test. What follows are several
investigator’s attempts to quantitatively analyze such data.

Regression Modeling

An example of the use of a regression model was previously shown in Figure 9.
However, Figure 14 shows regression modeling applied to a single site, single bandwidth
test. Figure 14 represents a low workload vs high workload situation using log mean
magnitude (in microvolts) versus task time in seconds (0 to 120). Figure 14 is based on
an EEG flight test accomplished by the AFFTC Test Pilot School in April 1992, and
recorded by Sterman, Mann, and Kaiser of the University of California, Los Angeles.
The experimental variable in this study was the degree of handling control available in
an NT-33 jet trainer. Four pilots flew a set course using three types of handling qualities
control "programs” for the aircraft. The mission flown was representative of normal
flight manuvers and included banked tums, takeoffs, landings and routine flight
procedures. What Figure 12 shows is that for a single site, and on a given flight
procedure, a pilot had a good handling qualities program for the low workload condition
and a poor handling qualities program for the high workload condition. The designation
of good versus poor handling qualities was subjectively determined based on a group of
the NT-33 Aircraft contractor personel (Calspan Corp.) and USAF test pilot’s opinions
over an extended time period. The ratings of the handling qualities programs were not
revealed to the test pilots during this experiment other than they knew there would be
better and worse types of handling qualities control programs available for each flight.

Much of the data analysis methodology used in the TPS study was organized by
Hunn, in 1992, and is reviewed in the following pages. Figure 15 shows a single site
(F3) output in the 8 to 12 Hertz bandwidth for a test pilot subject. The log mean
microvolt values are shown subjected to a 20 second smoothing function proposed by the
UCLA team. One hypothesis for this test was whether the data from one or more sites
could be correlated
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with different levels of mental workload based on Alpha band (8 to 12 Hertz) supression.
This question is addressed by the waveform pattern shown in Figure 15. This data
analysis used a 20-second smoothing function which creates a large peak-to-peak distance
in the low workload data vs the high workload data. According to M.B Sternan, this
trend is consistent with Alpha supression.

Based on research in a variety of settings, it has been demonstrated that when
placed under varying degrees of task loading, the human brain modifies its alpha band
emissions.  Causation, or even strong correlation for this effect, has not been
demonstrated definitively, but its occurance has been reported in numerous studies. It
is important to note that in terms of data analysis any such attempt to demonstrate Alpha
supression would be dependent on the proper degree of smoothing function applied. The
epoch length would also be critical in determining the degree of precision with which a
decision could be made regarding waveform output for a discrete event. In this case, the
use of a 20-second smooth rate was not correlated to discrete performance events.

Various smoothing functions are often applied to EEG data by varying the
grouped averaging of the data, i.e., the period of time which constitutes an individual
epoch or a smoothing average length, the resultant waveform will change shape
dramatically. Selective management of the length of the waveform timeframe may allow
the researcher to see patterns of activation which may not be obvious in the FFT or raw
data. There is also a significant risk of creating patterns where there are no obvious
connections to performance or task difficulty. Examples of wave form smoothing are
shown in Figure 16. This figure shows the potential for error when using a smoothing
function while assessing a discrete point in time. An arbitrary zero line is superimposed
on the three graphs which have an original signal, the same data with a 7-segment
smooth, and the original data with a 21-segment smooth. The segments in this figure are
based on a 2 second epoch length. The potential for error is possible not only in creating
a trend over time which may lead to erroneous conclusions about task performance, but
more importantly may lead to a considerable error when examining discrete events. In
the case of discrete events, the superimposed line would reveal that microvolt output was
rising in the first graph, had reached a negative low point in the second graph, and had
reached a peak in the third graph. The implications for this are clear, the use of
smoothing functions must be used with caution, particularily with interpretation of
discrete events.

Waveform Amplitude Measures
Amplitude values of the single site Alpha band were alsc examined for the data
in Figure 14 and they show a pattern of alpha amplitude reduction with a log mean value

of 1.4 microvolts in the low workload condition to a log mean of 1.09 microvolts in the
high workload condition. The significance of this difference was not statistically tested.
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A second variation of amplitude analysis (Hunn, 1992) used the integral of each
of two waveforms associated with two levels of difficulty of a flight related task. On the
two different tasks, taken with one subject, an integral value of 126 microvolts was
derived for a low workload task versus a value of 120 microvolts for a high workload
task. The integral was chosen to add a slightly different focus to the technique of using
a mean amplitude as an overall index of activation, in terms of overall power expended
on the task. Comparison of the integrals of the two curves would only have application
in a within subjects comparison, with all matching variables held constant. It would be
very inappropriate for between subject comparisons due to very large differences in
individual brainwave processing. The use of the integral of the waveform has not been
tested as a predictive indicator at this time; its use has been postulated as a possible
analysis tool for within subject comparisons. It is speculated that the mean or integral
value of the waveform may have less predictive potential than waveforms shape.
Observation of several data sets under different conditions indicates that the periodicity
of the waveform may have a higher correlation to task difficulty than amplitude
measures.

Polynomial Waveform Modeling

Several approaches were tested at the AFFTC by Hunn (1992) regarding the
possibility of modeling the EEG signal from a single site using a polynomial model.
Incremental steps were taken to accomplish this process by using lower order polynomial
approximations which gave increasingly more accurate approximations to the waveform.
The final attempt to model this waveform used a ninth-order polynomial approximation
(Figure 17). This wave approximation was computer generated using EASYPLOT TM,
however, a mathematical model with this degree of complexity could not plot the EEG
signal in the high workload condition with an accurate degree of representation. It is
postulated by Hunn that the failure of the ninth-order polynomial modeling would not
preclude the use of still higher order polynomials, however, powerful computing facilities
would be critical to that effort.

Cubic Spline Waveform Modeling

To deal with the inadequacy of lower ninth order polynomial approximations a
second graphic representation of the EEG waveform data was created using a cubic spline
model (Figure 18), which provided a much better fit to the data. This method calculates
a waveform which passes through every data point and has continuous first (slope) and
second (curvature) derivatives. It is based on third order polynomials placed together to
match slopes and curvatures. It is a "natural cubic spline" because the end curvature is
set to zero. Figure 18 shows that this can easily replicate the curvature of the high and
low EEG waveform. It is felt that this computer-generated (Easy Plot, TM) graphic tool
may have significant potential in modeling waveform activity, in terms of its geometric
analysis potential. Sections of any waveform can be plotted and analysed using this
technique and if waveform geometry can be used as a correlate to discrete events, then

33




120 ——q— ——m—— — e e e e e e
(N30
9
ogh .
. )]
orkload
[a]
Q] 0 [}
1) Gi B
P
' // \) 7
5 ] \\_ :
105 S\ o i AN
NS i, o “‘
: i K )
Lo : (]
100 bi E
g
H
95 t—oro - —— s e —e - - =
] i@ (&) ¥)
14 —
I,
| 13 '
i
)

ww 1"
orkload

10

9 —_— —_— e e e e e e e e

0 30 60 %0

Note ninth order polynomial fit t0 high workload (upper graph) versus
low workload (lower chart). Discarding the tails of the polynomial, note
the degree of fidelity of this model with low workload and the lack of

Jidelity with the high workload model. Data are log mean microvolts
(y axis) by fime (x axis) in seconds.

Figure 17 Ninth Order Polynomial Waveform Modeling
High and Low Workload, P3, 8 to 12 Hertz
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seconds (x axis).

Figure 18 Cubic Spline Waveform Modeling
High and Low Workload, P3, 8 to 12 Hertz
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this technique can be very useful in determining workload and EEG associations.
Waveform Standard Deviation Distribution Plotting

The last analysis (tested by Hunn, 1992) used the variance of the waveform in
terms of catagorical levels of standard deviations, see Figure 19. This use of variance
measures to compare amplitude and waveform parameters provided the most adaptive
tools used in the AFFTC study. The example in Figure 19 shows the output by standard
deviation classification bands which may then be graphed (Figure 20), or be subjected
to further regression or advanced statistical analysis such as cumulative distribution
function (CDF) analysis (see Bachen, 1988). Data of this type can provide an assessment
of waveform in terms of its periodicity rather than a mean amplitude measurement.

Figure 19 shows a high workload situation waveform and a low workload
situation waveform taken from the same subject. The deviations from a regression model
are shown in that figure as frequencies of standard deviations by groups. For example,
the high workload case has 37 examples of standard deviations in the range of 0 to 1
standard deviations, while the low workload case has only 29 examples of standard
deviations in the O to 1 standard deviation catagory. Considering the distribution of the
frequency of these standard deviations, by category, Figure 20 then plots those
distributions comparatively. Figure 20 shows that in the high workload condition the
frequency of the standard deviations is distributed almost normally, while in the low
workload condition there is a trend toward greater numbers of deviations in the range of
Otol and 1 to 2 standard deviation range. This would indicate that in terms of
periodicity the high workload condition is characterized by a lot of abrupt, shorter
deviations, while in the low workload condition the trend is toward the range of 1 to 2
standard deviation "excursions" from the regression line. Since this data was taken from
the 8 to 12 Hertz band, there may be supposition that it reflects alpha supression in terms
of the periodicity of the wave as measured by standard deviation groupings. At this time
there is not enough supporting evidence to confirm that supposition, the technique is
merely illustrated as a potential evaluation tool.
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Figure 19 Waveforms and Tabulated Standard Deviation Frequencies
(High Versus Low Workload Conditions)

37




30"
20"

10/ |

O High Workload
OJLow Workload

/

0-1 1-2 23 SO

Plorting the standard deviation distributions of these two conditions
gives the opportunity to use a statistical measure as an index of
periodicity. In the case of high versus low workload the difference is
shown as high workload having a roughly normal distribution of standard
deviarions while low workload has a distribution which trends toward
the 0-2 SD range.

Figure 20 Graphs of the Standard Deviation Distributions

(High versus Low Workload Conditions)
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Proposed additional analysis of this type of variance data could include
comparisons of the distributions of the two workload conditions to develop predictive
modeling correlations for individual performance. Statistical verification of these
methodologies was not accomplished in the TPS study, due to lack of experimental
design controls on the test, however, the techniques used will provide enhanced analysis
capabilities for future studies.

It is important to note that the proposed analysis techniques and data reduction
methods previously discussed are not an exhaustive listing. In particular, the use of
single-site analysis and long-period smoothing are not recommended for immediate future
study. The complex nature of the EEG signal demands a rigorous analysis procedure and
long-period smoothing and single-site study may not be the most appropriate for the
immediate needs of the AFFTC. Further examples of the complexity of EEG data
analysis may be noted in the following paragraphs.

Spectrographic/Topographic Analysis Challenge Areas

The previous discussions of analysis methods bypassed a large number of applied
technical questions which arise from this type of experiment. These areas include
hardware problems and signal analysis complexity (including interpretation).

Hardware and Signal Collection

Typical EEG output is in the range of 0 to 20 microvolts and the non-
evoked (endogenous) components are at the lower end of that range. Considering the
low level of power being measured there is considerable possibility of electrical artifacts
in the signal. At times it may not be clear exactly what is being measured in a2 dynamic
task environment. For example, how are endogenous components isolated from
exogenous components in a non-ERP test scenario?

Cognitive reactions to "extraneous stimuli" will produce the same effect as a
planned evoked stimulus.. Extraneous stimuli can be controlled in a laboratory
environment but in a flight test scenario there can never be a true control from visual,
audio, and somatosensory - "extraneous” inputs. A flash of reflected sunlight, an
unexpected radio squawk, or a turbulent air pocket will produce ERP responses identical
to laboratory introduced stimuli. This does not imply that the response to those stimuli
cannot be examined, however, from an experimental design point of view the lack of
precise control over those stimuli becomes problematic. This is one of many reasons
why ERP use has not gained widespread acceptance in a flight test environment.

The use of an ongoing signal, such as found in continuous EEG monitoring, has

no assumptions concerning the particular timing of an event, however, it is critical that
all behavioral events are closely time correlated to the EEG signal. Time correlation
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provides the connection from stimulus to mental processes then to behavioral actions.
Another connection which is necessary is that of a record being made of the subject while
performing the task. Two procedures have been used sucessfully to accomplish this task,
the use of eye tracking equipment and video documentation. Eye tracking, when
properly calibrated, can show the area that the subject is focusing attention in or out of
the cockpit. It can provide a fair degree of precision in an environment which is not too
dynamic, and is ideal for simulator use where the extemnal variables of G load and safety
of flight dynamics are of no concern. The use of standard video documentation, either
head-mounted or frontal-body shots, also provide a bigger view literally and figuratively
of what the pilot is doing or experiencing. This is particularily important from a
kinesthetic sense, i.e., tracking control input movements and artifact creating muscle
movements. The creation of muscle signal output by itself may even have diagnostic
value for workload, but when it intrudes on the EEG signal then it becomes an unwanted
artifact.

Artifacts are considered extraneous electrical signals from any source which create
wave perturbations that may mimic or obscure the desired EEG signal. These can be
caused by muscle movement, i.e., eye blink, facial twitch, or large muscle effects such
as caused by a sneeze or cough. Filtering is the primary means of reducing or
eliminating these effects; however, some artifacts always manage io pass through existing
systems. Artifacts can even result from the generation of "extraneous electrical
potentials” from skin to electrode galvanic effects, Electromagnetic Induction (EMI), and
static discharge. The majority of these types of artifact can be detected by examining the
graphic records of the ongoing EEG by someone trained in their detection. When these
artifacts do occur, they usually seem to be of a greater amplitude than the measured
signal and, for that period of time, the measured signal will be lost in the electrical pulse
of the artifact. Depending on the placement of these artifacts (for example an eyeblink
may be in the range of 0.75 second duration) an entire epoch can be lost. This loss may
be due to the complete overwriting of the EEG signal or may be due to the effect known
as ringing. It appears that the component most responsible for this loss of information
is the steep slope onset part of the artifact (personal communication C. Mann, UCLA,
1993). Regardless of which component causes this masking effect, the question remains
of what to do with the loss of data. One solution is to substitute a section of artifact free
data, however, this entails difficulty of insertion and substitution of data from an
appropriate source. Another procedure is the use of windowing that uses a filtering
system which provides a normal distribution-like filter to the dropout area. This is
actually like a weighting network which diminishes the effect of the pulse by cutting out
the component which is most responsible for the distortion. Essentially what this is
accomplishing is further bandpass filtration on an individual EEG signal interval area.
Multiple windowing is an extension of this process which smooths out the "extraneous”
pulse and closes the gap caused by the artifact. Examples of artifacts can be seen in
Figure 21 (Courtesy M.B. Sterman, UCLA/VAMC, 1993). Figure 21 shows the artifact
from an eyeblink compared to the artifact which would result from an eye movement.
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Top EEG record shows an eye blink, while the lower EEG record from
the same subject shows the artifact produced by an eye movement.

Figure 21 Sample EEG signals With Two Types of Artifact
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Figure 21 is also indicative of attenuation which might accompany some type of filtration
of the EEG signal. In other words, any perturbation to the data can be modified or
reduced, but, at this time, its effect cannot be entirely removed.

Variance of Brainwave Output

The waveform of the EEG signal is not uniform in amplitude, nor sinusoidal in
frequency which limits its ability to be analysed in comparison to a signal like common
alternating current. Swenson and Tucker (1983) discuss the use of several multivariate
methods to assess this individual variation in what they call individual "patterning" and
arousal. They used 1 second epochs which were "conditioned" with a split bell cosine
function, which modified the first and last 12.5 percent of the epoch in the same way that
windowing addressed artifact reduction in the previous section of this report. Their data
were Fast Fourier Transformed using a Cooley and Tukey procedure for the normal
delta, theta, alpha, and beta bandwidths. These cross spectra were then smoothed across
30 epochs to create a coherence matrix per band per condition per session per subject.

Cross-spectra matrices were then subjected to a factor analysis procedure using
Varimax orthogonal rotation then obliquely transformed with a Promax solution (k=3).
While the Promax rotation emphasized the largest loadings, the Varimax solution
paralleled the Promax and commonly resulted in three factors. The Varimax rotation is
an algorithm which transforms the initial correlation matrix into an easier to interpret
form. It does this by rotating the axis of the ploted variables 90 degrees, in effect
providing a more systematic way of looking at how the factors are related to each other
(an orthogonal rotation assumes that factors are uncorrelated). Using the Promax
approach, the matrix is rotated obliquely which assumes that the variables may be
correlated, however, in this case both types of Factor Analysis arrived at the same
conclusion; there were three primary factors which should be considered.

Two types of coherence analysis were performed on the data, multiple coherences
(similar to a regression R squared) and partial multiple coherences. Multiple coherences
are normalized covariances for a frequency band between one channel and all others
measured. Partial multiple coherences are the spectral covariances between a subset of
channels and a residual variance in a particular channel. This assumes that there is a
partialing out of effects in that channel from the subset of channels previously mentioned
(i.e., the subset is held constant).

Results of the previous computation showed a correlation of factor loadings and
an index of homologous factors per subject, over two sessions that gave values above
0.9. There was variation in this study and it was found that frontal electrodes had
particularily high values in relation to temporal electrodes. T-tests were performed on
electrode by bandwidth combinations and, for nearly all combinations, significance was
found at p = .02 or below. Some of the T-tests produced p values in the .005 range and
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are discussed in detail in Swenson and Tuckers text.

The overall consequence of this type of testing is that there are established
techniques which indicate that EEG output by an individual is consistent over trials and
conditions. This also applies to coherence within different bandwidths, which have
degrees of variation but still provide redundant measurement information. At its ultimate
extreme this could lend credence to single-site monitoring within selective bandwidths.

Analysis of Spectrographic Data

The interpretation of spectrographic data derived from EEG analysis has
previously been discussed using conventional statistical methods, i.e., ANOVA,
Correlation, Regression, etc. Data from spectrographic measurement methods may be
represented using three-dimensional plots. These plots resemble a topographic land map
with contours, peaks, ridges, and valleys. For the purpose of this report, the use of the
term topgraphy applies to both the physical location of the signal within the brain (site
location) as well as the three dimensional representation of spectrographic data values,
therefore, topographic analysis can apply to both brain location and the topography of
spectrally created EEG landscapes.

Some of the data associated with spectrographic analysis are produced from FFT
transforms and are illustrated in Figure 22. This figure (from, Lewis, McGovemn,
Miller, Eddy, and Forster (1988)) shows the effect of a G load onset (in a centrifuge) in
the frequency range from 4 to Z4 Hertz over a period of time of under 10 seconds. The
spectral landscape reveals clearly that something is occuring in the 25 to 31 second
timeframe. This is particularily noticeable in the 12 to 24 Hertz band and shows up as
a ridge of amplitudes extending out from the range to the left. It is also interesting to
note that this chart shows the effect of G-LOC at the point of 31 seconds, where output
drops off in those bandwidths completely until 40+ seconds. This type of presentation
is more of a visual aid than a numeric index of load, in this case G-load, however, it
illustrates the point that EEG signals can be displayed and visually analyzed with
reasonable effect given certain assumptions. 4

Topographic mapping using a three-dimensional representation of the FFT
transform is shown in Figure 23 from Pigeau, et al.(1988) and demonstrates the
amplitude effects in a 1 to 25 Hertz band over a period of time of 4 minutes. This was
from a fatigue study which examined EEG output after extended sleep deprivation
periods. This particular chart shows a subject who falls asleep three times during the 4
minute session. Notice that there are four alpha peaks when the subject is awake and
three alpha valleys when the subject is asleep. There also appears to be a trend toward
declining alpha with the passage of time. The importance of this chart is not in
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This spectrographic landscape shows increased activity in the
12 to 24 Hertz range (possibly muscle tensing) when approaching a G-LOC
flight situation. The band from 8 to 24 Hertz has very little activity
past the 31-second mark, the point which corresponds to the highest
level of G force sustained, and the point where conciousness was lost.

Figure 22 Topographic Landscape Showing G-LOC
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Frequency (1)

This representation shows three valleys between four peaks of declining
amplitude over time. The data are from a sleep deprived subject who
experiences three shert periods of sleep as shown by three valleys
located berween four peaks in the 10 Hertz range.

Figure 23 Topographic Landscape Showing Sleep Onset
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the characterization of alpha band versus sleep it is in the style of graphic presentation
of the data and how that presentation was created. Pigeau’s group used an AutoFFT
method for their presentation of data. Using multiple FFTs with a window of 20 seconds
and a lag of 2 seconds over a 4 minute test period they performed overlapped FFTs
which resulted in 111 frequency spectra which were plotted three dimensionally.
Pigeau’s data from time O to time 20 seconds was Fast Fourier Transformed, then the
timeframe 2 to 22 seconds was transformed, and this multiple FFT "windowing" process
then eliminated the discontinuities which occur when digital data are "onset" and
"ended." Use of this technique provided seamless data recording and interpretation
possibilities with that EEG test scenario.

Statistical Analysis of Topographically Represented Spectrographic Data

There is considerable potential in the use of three-dimensional representation of
spectrographic EEG data by means such as those shown in Figures 22 and 23.
Representation of EEG in this way can be tied to one or more types of discrete events
and also allows a characteristic pattern, like as baseline, to be created for each individual
tested. What is being proposed is more like a brain-scape, or topographic representation
of an individual’s response pattern in simulated three-dimensional space. Figures 22 and
23 show time, frequency, and magnitude. Similar charts for different degrees of
workload could also be produced using proper time synchronization to differing levels
of difficulty by bandwidth and site. This process could then produce brainscape
templates which could be compared within a subject to quantitatively determine control
limits for any given task. This analysis concept hinges on several major assumptions:

1. The brainwave pattern for an individual is fairly constant.
This is emprically supported by studies such as Swenson and Tucker (1983).

2. The EEG trends such as Alpha suppression are repeatable and reproducable in
a variety of circumstances. Empirical support for this extends back to Berger
(1930).

3. There is some quantitative way to prove, with a reasonable degree of statistical
confidence, that one pattern is different from another, i.e. the pattern from 1
degree of workload to another. Evidence for this could be the reliance on
performance and subjective data, as well as the appropriate statistical and
experimental methodology.

The first two assumptions are supported by literature review and research while
the last assumption is dependent on future research.
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In terms of the analysis of these spectrographic brainscapes there are sophisticated
techniques which may be adapted to this type of data. Several techniques which should
be explored involve the study of trend surface analysis methods. Specifically, the use
of polynomial regression was proposed by Student, in 1914, to model data in two plus
dimensions. This technique would be a start, and with the use of computer modeling a
spacial analog of splines could also be used to model the structure of the data. A recent
technique developed by D.G. Krige treats the data as a Gaussian random process then
catagorizes regionalized variables by their covariance structure. Conversely, if the data
are not appropriate for the formal assumptions of a Krige Model then an alternative
process might be employed. An alternative might be the use of Hermite polynomials
(disjunctive Kriging) which have nonexplicit distributional assumptions. It is anticipated
that the previous method would provide an analysis tool which is analogous to a
distribution free (nonparametric) test. Using sampling theory methods and a spacial
variogram approach, the structure of the EEG topography could be explored and
hypothesis testing could be possible.

CONCLUSIONS

Considerable effort has been expended in the search for quantifiable workload
metrics. Of the methods proposed, EEG physiological measures offer some unique, non-
intrusive and powerful techniques. Evoked Potential technology led the way for brain
research from the 1940’s into the late 1980°s, however, in a flight test environment more
powerful techniques are being developed. Propose the use of continuous EEG
measurement methods to assess workload. (R1)* The challenge for EEG measurement
at this time is not so much the acquisition of the signal but the analysis and modeling of
that signal for predictive workload experiments. A critical issue is also whether EEG
signals will correlate well with constructs representing workload. Considerable effort
will be necessary to create a model which will predict overall workload and break down
physical versus mental components and then be able to sucessfully discriminate sensory,
mediational, and motor elements. The use of different 10/20 located sites may provide
the tools to assess behavior based on known physiological functions of specific brain
areas.

All of the analysis methods discussed will have to be systematically tested and
only with considerable replication can this data be generalized to the general population
of pilots and aircrew, and eventually to the population as a whole. At the AFFTC we
have the ability to structure flight simulator workload conditions of our test subjects with
a fair degree of precision, but our approach must be robust to transition to an actual
flight test environment, and eventually to the general population. Currently there is a

! Numerals preceded by an R within parentheses at the end of a sentence correspond to the
recommendation numbers tabulated in the Conclusions and Recommendations section of this
report.
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trend of non-mathematical and non-robust methods being used to analyze EEG data and
this problem may be addressed by rigorous application of mathematical techniques.
Recommend the use of Spectrographic/Topographic methods and associated statistical
analysis. (R2)

The following factors may be considered as practical guidelines when considering
the progression of an EEG test program, in a flight environment.

1. Consider the overall fidelity of flight simulation versus flight. Tasks in a
simulator environment should mirror the tasks of an inflight environment as
much as possible. (R3)

2. Establish firm control of "extraneous” variable effects both in simulator and
inflight and ensure continuity within the test team and the pilots. The pilots
used for the simulator test should be used in the flight test , thus using the pilot
as his own control. (R4)

4. Budget for the analysis of large amounts of data for either flight scenario.

5. Examine the limits of the generalizability of the results derived from the
various test types.

The prior considerations for EEG testing may be further addressed by some
additional validity checks used in the experimental design chosen. In other words, in
order to determine if we are actually measuring "workload" accurately we should include
two alternative tools to enhance EEG results:

1. Aircrew subjective report using interview, written narrative, and rating scale
assessment.

2. Aircrew performance measures analyzed with a critical statistical approach.

Subjective reporting should involve short, simple questionnaires which will
address task situations and will be completed postflight. The use of SWAT, TLX, and
Modified Cooper-Harper, and the AFFTC Modified USAFSAM scale should be used to
assess subjective responses. Interviews can be informal or formal following the flight
to assess the pilot’s reaction to the task, assessment of workload, and performance.

Aircrew performance must be determined by using apriori criteria that involve the
performance of the task; examples of this could be flight path deviations, airspeed
maintenance, landing glideslope accuracy, etc. These performance tasks could then be
compared to a standard type of psychological taxonomy used in workload assessment.
A common taxonomy would include sensory, mediational, and motor dimensions.
Combinations of these dimensions could be assessed using a task analytic approach and
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integrated into the flight test scenario. In time, each pilot will create enough data from
test to show characteristic performance patterns which can be used to determine
performance deviations under various workload conditions. Using conventional statistica!
procedures, the performance for all catagories of workload can be established and then
correlated with self-reported workload ratings and EEG assessments.  Using this
multidisciplinary approach will allow comparisons of known techniques such as subjective
assessment and objective performance data with the proposed EEG measures. Use
additional workload measures 1o confirm the results of the EEG data. (RS)

Future Trends

Since the human brain is very capable at pattemm recognition and classification,
the use of graphic three-dimensional portrayal of EEG data provides the chance to rapidly
assess a particular EEG data set and discriminate activities when they are correlated to
time-fixed behaviors. The quantification of that type of data can be addressed by several
of the analysis methods discussed previously. A detailed statistical analysis of the
topographic representation of three-dimensional data is beyond the scope of this text.
There are few procedures to discriminate degrees of correlation or coherence between
topographic structures and some of these were reviewed previously. In other words, the
ability to statistically describe onset rates, frequencies, and amplitudes simultaneously
across all bandwidths and over time is a very difficult task. What can be done is to use
the human ability to integrate these disparate elements into understandable pattems,
which may be of the form of general pattern recognition that may have high predictive
value without having an associated statistical test of probability. This is shown clearly
in Figure 23 where interpretation of the waveform can be time correlated to behaviors
and subjectively assessed without the use of a statistical analysis. This procedure is
commonly used in the conventional medical examination of X-Ray photographs, where
recognizable patterns may be differentiated without the use of an advanced statistical
procedure.

The implication of the analysi . methods discussed previously is that with the use
of multiple sites and bandwidths the attribution of waveform output or pattern recognition
could be traced to specific neural areas previously shown, by medical studies, to be
associated with certain types of behaviors. In a broad sense this could provide a road
map to interpret and predict behavior by looking at certain components or bandwidths
in an EEG printout. This ability goes far beyond merely predicting overall classifications
such as low workload versus high workload; it addresses the ability to assess behavioral
events based on EEG output. Of course, this ability will require considerable
investigation to determine degrees of workload, and will also have to be correlated with
subjective and performance measures to be validated.

Recently, the use of automated techniques, specifically computer neural networks,

have been suggested as tools which could be used to unravel patterns of the EEG signal
and be able to classify those patterns more quickly and effectively than the human mind.
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This technology shows considerable potential, however, it entails the expenditure of very
large sums of money to manage the data and to classify and code the input to those
networks, which may be more appropriate to a laboratory environment at this time.

RECOMMENDATIONS

It is recommended that the AFFTC proceed with simulator and inflight EEG
studies, and the following guidance should apply to that testing:

1. Propose the use of continuous EEG measurement methods to assess
workload. (page 47)

Continuous EEG measures are believed to have greater potential in the analysis
of real time workload assessment than ERP studies.

2. Recommend the use of Spectrographic/Topographic methods and associated
statistical analysis.(page 47)

These methods appear to have potential to sensitively discriminate types and
degrees of workload which may be demonstrated by variations in amplitude and
frequency of the EEG output. These techniques also allow a wide range of bandwidth
and epoch analysis possibilities. In addition, they have the potential for future on-line
analysis as a workload gauge rather than just as a post-hoc assessment tool.

3. Tasks in a simulator environment should mirror the tasks of an inflight
environment as closely as possible.(page 48)

This will allow for the control of task related and extraneous, variables, which
will influence the conclusions of the test.

4. The pilots used for the simulator test should be used in the flight test also,
which will use the pilot as his own control.(page 48)

This will provide experimental design control on within-subject variability, and
allow for repetitive trials to determine variance of the measures taken.

5. Use additional workload measures to confirm the results of the EEG data.
(page 49)

Subjec ve and performance measures will provide a valuable check on the validity
and conclusions which can be drawn from EEG workload studies.

The analysis techniques outlined in this document would easily lend themselves
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to a full-scale controlled test in a simulator or flight environment. Several studies
proposed for the AFFTC could use the statistical and graphical analysis techniques listed
in this report, and those techniques, when supplemented by methods used by other
researchers, could provide an integrated system to quantify workload.
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AFFTC
AgCl

ANOVA
Au
BAEP
CDF
C-H
CNS
EEG

EMG
EOG
EP

FFT

MANOVA
MCH

ms

mv

N100

PCA
PREP

P300

Sd

SEP
SWAT
SWORD

TPS
VDT
VEP

ABBREVIATIONS

Air Force Flight Test Center

Silver

Silver chloride

Auditory Evoked Potential

Analysis of Variance

Gold

Brainstem Auditory Evoked Potential
Cumulative Distribution Function (Analysis)
Cooper-Harper Rating scale

Central Nervous System
Electroencephalography, Electroencephalogram
Electromagnetic Interference (by Induction)
Electromyogram

Electrooculogram

Evoked Potential

Evoked Response Potential

F-Test (statistical)

Fast Fourier Transform

Hertz (cycles per second)

Multivariate Analysis of Variance

Modified Cooper-Harper Rating Scale
Milliseconds

Microvolts

EP Negative Deflection 100 msec. Post Stimulus
Principle Components Analysis

Pattern Reversal Evoked Potential

Platinum

EP Positive Deflection 300 msec. Post Stimulus
Standard Deviation

Somatosensory Evoked Potential

Subjective Workload Assessment Technique
Subjective Workload Dominance Technique
Technical Information Memorandum

Task Load Index (NASA rating Scale)
AFFTC Test Pilot School

Video Display Terminal

Visual Evoked Potential
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APPENDIX A

There are considerable numbers of windows and transforms which have been used
on EEG data however, the following formulas are considered representative for a typical
application.

1. The Fast Fourier Transform is calculated using the following equation, which
gives the cosine and sine terms. These form the average products of the discrete sample
series x[n] with discrete cosine and sine series of different frequencies. (See Dumermuth
and Molinari, in Gevins and Remond), (Eds.) Handbook of Electroencephalography and
Clinical Neurophysiology.

N-1
ALKl = 2N > x[nlcos@ffkn/N) where k=0,...,N
n=0

N-1
Bk] = 2/N > x[nlsin@fkn/N) where k=1,....M
n=0

Where N= the number of equally spaced samples used.
The data x[n] may be filtered prior to the transform.

2. Discontinuities between the first and last samples which result from the periodic
sampling used are diminished by the use of a weighting function. An example of this
type of function is the Hanning window, which is shown below:

2fn
wn) = .56 - .44cos N-1
= frequency
N = number of samples

3. A final transform is the use of either a log transform or a moving average
procedure. This is discussed by Ahlbom and Zetterberg (1976).
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